
AUTOSENS PROCEEDINGS 1

Open standards enable continuous software
development in the automotive industry

Markus Glaser, Charles Macfarlane, Benjamin May, Sven Fleck, Lukas Sommer, Jann-Eve Stavesand,
Christian Weber, Duong-Van Nguyen, Enda Ward, Illya Rudkin, Stefan Milz, Rainer Oder, Frank Böhm,

Benedikt Schonlau, Oliver Hupfeld, Andreas Koch

Abstract—Until recently, the automotive industry was primarily focused on design, development of electronics and mechanics, and
manufacturing. Nowadays the software component of new vehicles has become a large portion of the development cost, driven by
adding numerous new sensors, intelligent algorithms, very powerful and specialized processors and a highly complex user experience
to the vehicle. In addition, requirements for high-performance and real-time processing as well as the vehicle’s distributed architecture
bring challenges, but moreover supply chains further complicate development. In this article a high-level overview of vehicle
development is provided, followed by a deep dive in the different software development processes, languages and tools that are
required for efficient development of the next generation of intelligent vehicles. This paper especially explores SYCLTM, an open
standard from The KhronosTM Group for high-performance programming of heterogeneous multicore processor system.

Index Terms—Automotive, continuous development, open standards, SYCL, CUDA, AI driven, software driven, ADAS, heterogeneous
computing, AI, Machine Learning

F

1 INTRODUCTION

Modern cars utilize 100+ ECUs and reached 100M lines
of code by 2015 [1], [2]. Code complexity is expected to
increase exponentially, resulting in over 650M lines of code
by 2025 [3] for every vehicle and over 1bn lines to achieve a
Level 5 autonomous vehicle.

Development cycles are getting shorter with Continuous
Integration (CI) and Continuous Delivery (CD) being estab-
lished in the automotive industry, and these practices are
explained and explored further in this paper. Technology
today allows for the latest updates automatically, instantly
and ”free”, helping to improve and extend functionality.
This development began with agile software management
methods, gaining popularity in application software devel-
opment, enabling fast release-cycles. Software developers
can provide a new release to a broad base of customers at
the push of a button. Car companies are now focusing more
on software and features, bringing them more in line with
techniques used today to delivery software applications to
always connected devices.

However, ”Fail Fast” has become the driving motive of
innovation-generating software companies. Within automo-
tive, any bugs in software can have unexpected and costly
results. Assuming a car manufacturer intends to ”Fail Fast”,
they will have to do so before they deliver the new software,
performing thorough checks of their software regularly if
they intend to deliver continuously.

Another demand from the automotive industry is WP.29
within the UN World Forum, which includes a requirement
that software must be continuously maintained for the life-
time of the vehicle.

Three main challenges are covered in this article: The
software development processes, the shift towards CD / CI,
and the programming of future - heterogeneous systems us-

ing open standards (e.g. SYCL). To this end an overview of
the automotive landscape is given, where functional safety
standards are now the norm and where open standards
for software are becoming the solution for the automotive
industry, achieving the demands of ADAS developers and
overcoming software development challenges.

2 STATUS QUO

2.1 Digital transformation

Tesla R©, a Silicon Valley company, is the only automobile
manufacturer credited with achieving CD [4], [5] today. The
traditional automotive industry is facing a radical and fun-
damental transformation [6]. Besides electrification of the
powertrain, new vehicle development projects are rapidly
adopting a broad range of new sensing and AI technologies.
The overall goal is to provide a more comfortable and,
ideally, automated ride for the driver and passengers, while
reducing accidents and increasing safety. The intelligent
sensing systems that support vehicle operation are often
referred to as Advanced Driver-Assistance Systems (ADAS).
We will use the ADAS/AD term broadly in this paper; to
describe both systems that provide either fully autonomous
driving capabilities (AD) and systems that assist the driver
in operating the vehicle (ADAS).

These new ADAS solutions are driving a major transfor-
mation in the vehicle development process. Key elements
are depicted in Fig. 1.

Within this paradigm shift two major components come
together:

1) Software is becoming the key value proposition.
It is a major transformation and requires the cor-
responding infrastructure and processes to enable

Wednesday 9th September, 2020 (20:06)

AUTOSENS PROCEEDINGS 2

digital
transformation

Traditional Approach

hardware

proprietary

static, frozen

single development

single integration

single platform usability

software tied to hardware

tied to project
(hw, Tier1s, Tier2s)

software, data, AI

(open) standards

field upgradable (OTA)

continous development (CD)

continuous integration (CI)

cross platform usability

decoupling of software and hardware

robust against changes
(hw/sw components, Tier1s, Tier2s)

Future Approach

Fig. 1. High level overview of the automotive digital transformation.

its full potential (CD of software, software over-
the-air (OTA) upgrades, industry defined software
standards, software decoupling from hardware).

2) Data captured, labeled, and processed/analyzed
is becoming a major asset. AI based perception
systems significantly outperform classical, hand-
engineered software algorithms, especially for AI
based software. Data is crucial for the digital trans-
formation.

The changes are industry-wide and not only affect tech-
nology development, but also business partnerships, busi-
ness models, and even the value proposition to the con-
sumer. One example is the recently announced partnership
between Mercedes R© and Nvidia R©. Nvidia, with its roots
in consumer electronics and gaming, has evolved to be a
leading supplier in AI and brought its technology into the
automotive domain. Mercedes, with many other companies,
stated their commitment toward a software-defined vehicle
development approach and Nvidia are providing a highly
programmable solution for this. MobilEye R© has similarly
created an intelligent platform and achieved success as an
early solution bringing AI processing into the vehicle.

In this paper, we give an overview of the underlying
unique requirements of automotive ADAS, with a focus
on software development. We identify relevant key per-
formance indicators (KPIs) and review and assess multiple
approaches.

2.2 Automotive software development process

The automotive digital transformation in general, and the
advent of ADAS in particular, increases the demand for soft-
ware dramatically, resulting in unprecedented challenges
with regard to organization of the software development
process and the interaction of OEMs and suppliers.

2.2.1 Organizational transitions
Until recently, ADAS development projects were mainly
treated as isolated activities, driven by the OEM with its
awarded respective Tier 1 suppliers and the underlying
Tier 2 ecosystem. The suppliers delivered hardware units
to car manufacturers with all the necessary software pre-
specified in terms of thousands of requirements. Now, these
requirements are no longer static, but are changing even
after delivery of the car. Complex ECUs include software
from multiple vendors, which triggers the need for fast

Gen x Gen x+1

Transfer
- specification
- lessons learned
- IP (esp. SW code)
- data (incl. labeling)
- validation
- features (top down up
to certain level)

continuous development. Development path robust against
changes (i.e., increase robustness/invariance against Tier1

changes, hardware changes, packaging changes, generation
changes)

Tier1

algorithmic/
sw IP

Tier1'

algorithmic/
sw IP

no link

Gen x Gen x+1
Transfer
- specification
- lessons learned

no continuous development. nothing to
transport to next gen. Reinvent the wheel

every time (at high cost!)

Tier1
Tier1'

(different)no link

algorithmic/
sw IP

algorithmic/
sw IP

no link

Fig. 2. Left: Traditional software development organization, with no
software IP being preserved between generations due to tight cou-
pling to proprietary hardware and tool interfaces.. Right: Benefits of
open standards in a continuous software development process. Due
to standardization of hardware and tool interfaces, software IP can be
preserved and development cost can be reduced.

software integration that remains safe and provides high
quality.

The continuously changing requirements, and the fact
that software IP will be an important asset for automotive
companies in the future, means a change towards a CD
process is inevitable. In Fig. 2, the left side summarizes the
traditional approach where the software IP is tightly cou-
pled to the Tier 1 supplier’s proprietary tools and hardware,
and software IP cannot be preserved between different gen-
erations of vehicles, resulting in repeated high development
costs.

In Fig. 2, the right side illustrates the benefits when open
standards are used to develop the algorithms and software.
As the interfaces to hardware and tools are specified by
open standards, software IP can be preserved and benefit
the enhancements in newer vehicle generations, even when
switching Tier 1 suppliers and underlying hardware. This
reduces development cost, time to market and preserves
important company assets.

Due to the high volume of automobiles, the development
effort (and cost) is less crucial compared to the bill of
material (BOM) of such systems. This forced traditional
OEMs to squeeze every bit out of a system by using pro-
prietary approaches, hardware, and tools. This is in sync
with the OEMs traditional key competence of performing
integration, whereas the underlying Tier 1 and its Tier 2
partners focus on innovation. We see that standards enable
the automation of integration. As many functions that have
previously been reserved for high-class vehicles only now
become mandatory even in lower end (high volume) vehi-
cles, the burden of reinventing the wheel with significant
innovations and risks becomes a new factor. This is true
for both surround and in-cabin sensing (driver monitoring),
driven e.g., by Euro NCAP requirements.

2.2.2 Software development process

So far, the main focus of the software development process
in the automotive domain was the short time window to
develop until start of production (SOP) for the lead vehicle.
After initial SOP, a rollout phase started where the main
task was to integrate this resulting system in additional

AUTOSENS PROCEEDINGS 3

upcoming production lines and variants. Once the car was
in customer’s hands, there was neither the focus, nor the
technical possibility to update certain features for bug fixing
or adding innovations. While remote updates OTA are com-
monplace, very few cars can do this today. Moreover, legacy
vehicle architectures with their fragmented ECU topology
do not allow for OTA updates, and the appropriate cyber
security measures required are missing, as is any vehicle
communication capability.

Installing new software is technically feasible in work-
shops, however the development resources from the corre-
sponding Tier 1s are usually already focusing on the next
project/generation for a potentially different program or
OEM (except for critical or legislative bug fixing).

Software driven companies show a different approach
where CD is a fundamental ingredient. Tesla vehicles for
instance all support over-the-air system software updates
that are installed without having to bring the car to a garage.
This enables rapid and frequent software improvements to
the whole vehicle that continuously enhance the operation
and user experience. The update cycles of the consumer and
smartphone devices have driven the demand for centralized
software management and network connectivity for access
to the cloud. This transition might continue towards a
mixture of zonal and domain-oriented architectures, where
partial updates based on functions or zones are becoming a
service that will be distributed towards available devices in
the vehicle itself, using information from onboard sensing
and offboard information. A key challenge in automotive is
that functionality needs to fulfill the expectations of a long
vehicle lifetime, high quality, safety, and security. Software
and system failures can create critical states which in the end
can risk people’s lives and cause severe damage. This might
lead to a scenario where the best-of-both-worlds will coexist:
the old traditional safety and quality-oriented heritage of
automotive, combined with the new demand for rapidly
evolving complex software. In Fig. 3 the ecosystem players’
roles are classified relative to their awareness for continu-
ous development (and thus their belonging to the ”Future
Approach” category on the right of Fig. 1). Emerging non-
legacy companies obviously are not required to perform
such a transformation but start in the green area from the
beginning.

2.3 Distributed and heterogeneous systems

Radars, LiDARs, cameras, ultrasonic, GPS and mapping
data – so many sources of data need to be processed, fused,
and interpreted to generate a set of controls for the car to
execute. When including the data checking, the fail-safe
systems with redundancy and the compute requirements,
the scale of complexity expands further than the current
system can support. Also, from high-end vehicles down to
economy versions with reduced systems, there needs to be
a modular and flexible system architecture to cope with the
market needs going forward. Sensors are distributed around
the car and vary in features, performance, functionality, and
interface protocols. Most sensors integrate analysis systems
to reduce the volume of raw unprocessed data being sent
around the vehicle. Processed and reduced data, such as
images or 3D transformation coordinates, is used instead,

continuous development awareness

New
OEMs

New
Tier1s

New
Tier1.5

Traditional
Premium

OEMs

Traditional
Tier1s

Traditional
Tier1.5

robotaxi/AD
companies

SW driven
companies

New open
ecosystem

SoC
vendors

Traditional
SoC

vendors

Fig. 3. Overview of old and new players of the automotive ecosystem
w.r.t. continuous development awareness.

so as not to overload the centralized network and compute
system with all the processing. Most sensor units contain an
integrated processing unit which itself will require updat-
ing, improving, and maintaining throughout the lifetime of
the car. The processed data and alerts are then fed into a
sensor fusion unit, which has to make sense of its inputs,
construct an operational scene using new data and previous
history to build a model of the type and intentions of objects
in the vicinity, and then execute a safe course of action.
”Intentions” is an extremely complex topic by itself. It is
of no use just identifying an object and location, but it is
also necessary to know what it is likely to do next. From
the behavior of an animal based on its historic movements
(pointing away or towards your path, fast or slow, disturbed
or calm, behavior when frightened etc.), to people, vehicles,
objects (shopping bag blowing in the wind or a solid object),
they all need to be interpreted to determine which maneu-
ver to propose to the car.

All these many different stages in the system have dif-
ferent processing requirements and need very different pro-
cessor types, therefore demanding heterogeneous systems
integrating many different processing architectures are now
common for the implementation of ADAS functionalities.

The most regularly used and commonly understood
ECU component is a CPU, e.g., as provided by ARM or
RISC-V. They are good at sequentially processing simple
pieces of data and irregular control functions. Many com-
panies are capable of supporting CPUs into production.
They are predictable and often programming can be done
in assembly, C or more recently C++.

For real-time data processing with more complex algo-
rithms, a Digital Signal Processor (DSP) is regularly used.
This starts to cause an issue for programming, since most
DSPs require the developer to understand their microarchi-
tecture. This is the first barrier for a programmer alongside
the issue for updating and maintaining the DSP functions
throughout the lifetime of a vehicle.

Graphical Processing Units (GPUs) have been regularly
used for providing graphics to the car dashboard and have
been used for many years with a good understanding

AUTOSENS PROCEEDINGS 4

of how to achieve this reliably. While GPUs have been
used in non-automotive products to provide vision and AI
functions, thanks to their vector-like processing architecture,
they have not yet been utilized much beyond the intended
graphics functions in vehicles. However, the programming
of these devices is popular thanks to the OpenGLTM (graph-
ics) and OpenCLTM(compute) open standard interfaces, and
CUDA, a well established proprietary interface for Nvidia
GPUs.

Another popular processor is the Vector Processing Unit
(VPU), often at the heart of computer vision due to its
ability to process an array of pixels in an image simulta-
neously. Like DSPs, the programming of these devices is
not standardized and requires very special attention to the
microarchitecture and assembly instructions to achieve an
efficient algorithm implementation. Often, these processors
are supplied as a black-box, i.e. system developers take what
is delivered by the semiconductor company and are unable
to provide their own functions or value-add.

The current generation of processors and accelerators is
especially suited to computer vision, AI, and machine learn-
ing. These are the latest technologies that need to satisfy
the processing needs of ADAS. They are very heterogenous,
providing different accelerators and programming inter-
faces.

An example of such a heterogeneous system integrating
a whole range of different processing units is Tesla’s FSD
chip [7]. It combines a 12-core CPU (divided into three clus-
ters of four cores each), a GPU, an image-signal processor
(ISP) and a specialized neural-network accelerator (NNA)
in a single System-on-Chip (SoC).

Without open standards for programming models on
different processor architectures, the interfaces and tools
require the manufacturers to fully commit to one solu-
tion. This goes against the desire of every manufacturer
to achieve CD, have a flexible supply chain and optimal
solution per vehicle SKU.

For all of the processor flavors available, and the differ-
ent applications within the ADAS pipeline, they all present
one very common problem – how does a software devel-
oper program ADAS systems in a consistent way avoiding
substantial re-writing for each generation, and how to keep
updating them for the lifetime of the vehicle?

2.4 What are Continuous Integration and Continuous
Development?

CI is the practice of regularly integrating and testing all the
developers’ working software into a shared code repository
on a regular basis. The merging of the software includes any
new features or improvements. As well as software, modi-
fications to data sets, test units, configuration parameters or
build scripts along with supporting documentation changes
are also integrated. With agile software development be-
ing widely adopted, long integration cycles are becoming
obsolete and even obstructive. In 1991, the term ”Contin-
uous Integration” was first used by Grady Booch [8] to
describe an effective, iterative way of building software. The
technique was quickly adopted into the set of techniques
used in Extreme Programming and detailed guidelines were
summed up by Fowler in 2006 [9].

An established CI process maximizes efficiency by min-
imizing the time it takes to build, test, and release new fea-
tures, while ensuring that a quality standard is maintained.

CD describes a process for iterative software devel-
opment and is an umbrella over several other processes
including CI, continuous testing, continuous delivery and
continuous deployment.

The CI cycle repeats on every new commit of a change
to the software stack being developed. Immediately the CI
pipeline starts code analysis, compilation, unit and integra-
tion tests in a sequence. An application can contain many
layers. Each layer in the stack can contain many dependen-
cies on libraries for functions such as math, scheduling or
communication protocols. Any change to any one layer can
trigger a new CI cycle. The CI pipeline ends with integration
tests performed on the hardware, generally a single ECU in
a vehicle in the field, otherwise known as Hardware-in-the-
Loop or Open-Loop test benches.

Note the added challenge here. CI / CD in a pure
software company is carried out (idealized) in one place
on one server and so the turn around on knowing a very
recent commit being successful can be realized in minutes
or hours. For automotive however, the CI / CD is likely to
be deployed and distributed across several physical systems
in different locations. A further additional challenge when
out in the field is the consumption and generation of test
data and its transportation. A test vehicle can consume and
produce petabytes of data, as sensors bandwidth can reach
or exceed 40 GBit/s (≈19 TB/h) [10], [11].

CD seeks to automate and streamline the process of
building, testing and deploying new code into a live or
staging environment.

What does CD promise?

• Faster delivery of new features
• Better quality product
• Risk avoidance
• Lower resource requirements
• Increased productivity

The main challenge for the automotive developer is that
a car is considered a safety-critical system, which means
that functional safety checks have to be performed before
any deployment to the production environment. Typically,
analysis methods like FMEA (Failure Mode and Effects
Analysis) or STPA (System Theoretic Process Analysis) are
used. These are used to carry out safety analysis identifying
possible hazardous scenarios and testing them against the
release candidate.

Since many parts in the ADAS AI compute stack are
from multiple vendors, open standards provide an ideal
solution. As for most of the numerous parts in a car, the
supplier has a duty to notify the OEM of any improvements
or changes resulting in an update release cycle.

2.5 Standardization

A development in parallel with ISO 26262, is the advance
made by AUTOSAR in an effort to develop a global stan-
dard for system architecture, so that the basic software func-
tions of automotive ECU’s can be standardized. AUTOSAR
(Automotive Open System Architecture) is a development

AUTOSENS PROCEEDINGS 5

Single ECU developer

Application software

ECU integration
tests

Deployment
hardware in the

loop
(test on

vehicles)

Functional
integration

Functional
safety

Acceptance
tests

Legal
acceptance

tests
Deployment

Manual step Manual step Manual step Manual step

Testing resultsCode submitted

CI / CD agile development cycle

CI / CD agile development cycle

ECU RTOS

Testing resultsCode submitted

CI / CD agile development cycle

Fig. 4. Continuous development pipeline for automotive

partnership between leading OEM’s and tier one suppliers
in the automotive industry. The common objective is to cre-
ate a development base for industry collaboration on basic
functions while providing a platform which still encourages
competition on innovative functions. The development part-
nership has been formed with the goals of:

• Standardization of basic software functionality of
automotive ECUs

• Scalability to different vehicles and their platform
variants

• Transferability of software
• Support of different functional domains
• Definition of an open architecture
• Collaboration between various partners
• Development of highly dependable systems
• Support of applicable automotive international stan-

dards and state-of-the-art technologies.

Mastering the ever-increasing complexity of future
ADAS requires abstraction and standardized, open inter-
faces to enable robustness against changes, especially those
made to individual modules, components, Tier 1s, Tier
2s, target car lines with different combinations of adjacent
systems of multiple generations (”fragmentation”) or even
system generations themselves.

Standards are thus crucial to enable this endeavor.

2.5.1 Old standards need to be updated
ISO 26262, the automotive safety standard derived from
the IEC61508 was released in 2011, driven by tragic vehicle
accidents caused by software failures. This includes Toyota’s
2005 incident where a faulty electronic throttle control sys-
tem is alleged to have caused unintended acceleration. ISO
26262 was published to provide a framework that enables
the identification of potential risks of software and hardware
failure, and to apply a standard to ensure the functional
safety of automotive electronic and electrical systems. The
standard can be used for all activities within the develop-
ment life cycle of safety-related systems including:

• Management, development, production, operation,
service and decommissioning

• The outlining of a risk-based approach (through Au-
tomotive Safety Integrity Levels - ASIL)

• Identification of unreasonable residual risk
• The validation and confirmation of safety goals
• The management of requirements for with suppliers

ISO 26262 has been commonplace in the European,
American, Japanese and Korean markets for many years.
The adherence by some automotive Tiers to old code quality
standards stifles the development of applications for vehi-
cles today for the convenience of obtaining a recognized
baseline level of quality. The ISO 26262 standard does not
mandate any particular quality standard for software de-
velopment. It asks that requirements for software be fol-
lowed according to the level of functional criticality which
is determined by the risk of injury to vehicle occupants.
Functional safety standards when released lag behind the
state-of-the-art and the second edition ISO 26262:2018 is
no exception. It presents a difficult balance between an
established and welcome baseline to work from with that of
todays‘ emerging complex ADAS solutions. The automotive
industry has recognized these gaps in safety standards such
as:

• Cyber-security
• Programming parallelism and indetermistic behavior
• Machine learning and training of AI systems
• Human interaction with autonomous systems

There are many institutes and groups producing stan-
dards to address these gaps and show the public and
government regulators that they are self-regulating and
managing the current and future concerns for safety in
autonomous systems. Some of these standards are listed
below.

Established quality standards:

• AUTOSAR (Adaptive) C++ coding guidelines
• ISO24772 Guidance to avoiding code vulnerabilities
• Japan (code) ESCR guidelines
• MISRA code guidelines
• MISRA guidelines for Automotive Safety Arguments

AUTOSENS PROCEEDINGS 6

Current functional safety standards:

• ISO 26262:2018
• DO-178C Avionic Functional Safety Standard
• IEC 61508 Functional Safety Standard
• ISO 29119 Software Testing Standard
• ISO DTR 4804 Road vehicles – Safety and cyber-

security for automated driving systems – Design,
verification and validation methods

• PAS 1881 Assuring safety for automated vehicle trials
and testing

• SAEJ 3061 Cyber-security

Emerging safety standards:

• UL4600 draft standard
• PAS/CD 21448 Safety of the Intended Functionality

– SOTIF
• ISO 21434 Automotive Cyber-security standard
• IEEE P2864 – A Formal Model for Safety Considera-

tions in Automated Vehicle Decision Making
• IEEE P1228 – Standard for automated driving soft-

ware safety
• IEEE P2851 – Exchange/Interoperability Format for

Safety Analysis and Safety Verification of IP, SoC and
Mixed Signal ICs

2.6 Classical computer vision development

Computer vision, or machine vision, has been researched
since the 1960s. For decades, computer scientists have been
trying to make computers understand images. The research
primarily followed a trial and error approach. Algorithm
developers manually identified what kinds of features, such
as colors, lines and gradients are salient for the specific
problem. Groups of detected features were then used as
input for classical machine learning algorithms such as
Support Vector Machines, Adaboost, and random forests to
try to recognize the objects in the image. Viola and Jones
in 2001 published an algorithm according to these princi-
ples that was widely used for many years to perform face
detection for instance [12]. And Dalal and Triggs published
a pedestrian detection algorithm in 2005 that lead the field
for many years [13]. This process of defining the kinds of
features that the algorithm should look for in the image
has largely been superseded by AI-based methods, which
automates this effort. We will describe some of these in more
detail in the next section.

Some fields of classical computer vision are still widely
in use though and have not been superseded by AI. For
instance, in applications that estimate both the camera’s
own exact location, as well as extract depth information
or 3D information such as point clouds from sequences
of images. These Simultaneous Localization and Mapping
(SLAM) algorithms track features from frame to frame, and
based on their displacement, structure can be extracted
using triangulation [14]. This is one example of a problem
that can be efficiently solved using predictable, well under-
stood mathematical techniques that consume fewer com-
pute resources than the neural networks used by modern
techniques.

2.6.1 Proprietary porting

Since most of these computer vision algorithms are pri-
marily designed by hand, and not trained as with ma-
chine learning-based approaches, they are expressed in a
programming language such as C, and not at higher ab-
straction levels. These programs then need to be mapped
and heavily optimized by hand for complex heterogeneous
computer architectures. The algorithms often need to be
partitioned across heterogenous processors. Besides stan-
dard CPU cores, target architectures often include multicore
vision processors that employ VLIW (Very Long Instruction
Word) and SIMD (Single Instruction Multiple Data) pro-
cessing, and complex memory hierarchies. The optimization
task requires a deep understanding of the underlying com-
puter architectures. Having to meet constraints such as run-
ning the algorithms at real-time frame rates of, for instance,
30 frames per second, further complicates this task. This is
a very labor-intensive, error-prone, and the resulting imple-
mentations are specific to the selected processor microar-
chitecture, with each semiconductor vendor having their
own proprietary and unique microarchitectures. Vendor-
specific programming toolchains are also often used, further
complicating this task. As a result, the computer vision
software that took a lot of work to develop, cannot easily
be ported and reused between one architecture and another.

2.7 AI-based software development

In 2012, AI research had a major breakthrough when Alex
Krizhevsky and his team combined three new technologies
together [15]. First, the ImageNet database of images had
been released, providing a collection of millions of images
that were each described by hand. For each image, a cor-
responding file labels the objects that are present in the
image. Second, Krizhevsky used powerful programmable
GPUs, which had recently come on the market, to run
his algorithms. This provided orders of magnitude more
computational power, opening up the road to using more
compute-heavy algorithms.

Third, they developed a new convolutional neural net-
work with many layers, which they called AlexNet. Instead
of computer scientists trying to figure out by hand which
features to look for in an image, as in classical computer
vision, AlexNet figured out what features to look for by
itself. AlexNet entered the leading ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) image recognition
competition and beat the whole field by a whopping 41%
margin. Since 2012, every algorithm that has won the
ILSVRC competition has been based on similar ”deep learn-
ing” principles.

This approach follows two steps: the design and training
of the neural network, followed by inferencing, where the
network performs the actual task of recognizing the objects
in view. We will provide more detail on each of these steps
below.

2.7.1 Network design and training

This step starts with collecting lots of sensor data in the
vehicle. To have thousands of kilometers of driving data
available is quite common. The dataset can be augmented

AUTOSENS PROCEEDINGS 7

with synthetic data that comes from simulation, or by ma-
nipulating the raw sensor data itself. The following step is to
label the data. During this labor-intensive step, the collected
data is categorized and annotated by hand, often helped by
tools that partially automate the task. Since a single camera
takes about 100,000 pictures per hour, labeling several hours
of driving data takes large teams of labeling staff. Neural
network engineers then design the network architecture: the
neural network layers and their configuration, how they are
connected, the number of layers, what activation functions
to use, the compute accuracy, etc. Automotive applications
then combine several of these networks to implement the
required complete top-level functionality. During training,
the dataset is run through the neural net several times,
each time adjusting the coefficients until the neural net’s
detection performance does not improve any more. This
training is performed offline in a data center, using high-
performance servers, since the compute requirements are
very high. It can easily take hours or even days to train
a single network. The output of this process is a trained
neural network, which includes a neural network config-
uration together with the network coefficients that define
the operation of the network. This trained network can
readily be deployed in the vehicle. Since the AI algorithms
are still heavily researched and improved upon, and ad-
ditional sensor data is being collected all the time, this
process of adjusting the network architecture and retraining
with new data should be continuous and not stop. The
task of data curation becomes important also. There is
considerably more data collected than what the networks
can be trained with within a reasonable time, so the right
subset of data must be selected. In addition, the trained
networks need to be validated with data that the trained
neural network has not seen yet, to ensure the network
can sufficiently generalize to new live sensor data of the
vehicle on the road. The datasets are constantly revised with
new data from vehicles on the road, better understanding
of where the trained algorithms fail, and according to new
algorithms with different requirements. Excellent starting
point tutorials covering the practical flow of training and
inference in TensorFlowTM are provided in [16], e.g., jupyter
notebooks, executable in Google co-labTM on overfitting
available in [17].

A relatively recent topic of research and development is
self-supervised algorithms. This is a form of unsupervised
learning where the data itself provides the supervision. In
general, this approach withholds some part of the data,
and tasks the network with predicting it. For instance, if
a vehicle is detected in a frame, then the vehicle should
probably also be present in the previously captured frame.
This has the potential to greatly reduce or even remove the
reliance on labeled data, resulting in algorithms that have
higher accuracy as well as reducing the labor-intensive task
of labeling data. Moreover, generative adversarial networks
(GANs) ?? are emerging where two concurring networks
operate in a competitive manner: The generative network
generates candidates whereas the discriminative network
evaluates them.

2.7.2 Inferencing

Once the algorithms are designed and trained offline, they
are ready for deployment in the vehicle. This requires the
algorithms to run fast, in real-time, and at much lower cost
than for training. Since it would take too much bandwidth
and latency to transfer the images from the vehicle to the
data center, every vehicle has to run the algorithms at the
edge, on processors inside the vehicles themselves. The
need for low cost, low power consumption, despite the
algorithms requiring a lot of compute power to run in real-
time, has caused the design of a new class of processors that
are specifically designed to run neural network inference.

One big benefit to the developer is that the neural net-
work algorithms are expressed at a high-level of abstraction.
The network configuration basically defines a set of filters
for each of the neural network layers and the dataflow
between them as a graph. The compute primitives to run the
network consists of just a few simple operations, primarily
multiply-accumulate (MAC), which are endlessly repeated
and can easily be parallelized.

Mapping these AI algorithms onto the specialized target
hardware is usually a highly automated approach. Most AI
processor vendors provide software tools that read in the
neural network description and parallelize and optimize the
network for running on the accelerator. The net effect is that
end users do not have to write a single line of code to run
their trained networks on the target device. As an added
benefit, this also means that it is much easier to add more
complex neural networks that run on one architecture to the
next.

Fig. 5 illustrates the first stage of the AI devel-
opment flow (training) which obviously requires the
availability and maturity of the sensor system (sen-
sor/lens/ISP/software/...).

DNN trainingdata capturing

sensor system
dev.

capture
system dev.

generic model

Fig. 5. Generic flow of AI model development that is to be used for
inference.

2.7.3 Quantized computing (efficiency mapping)

Fig. 6 depicts the transfer to the proprietary target using
non-standard/proprietary tools. First, the toolchain cover-
age is limited and often includes manual and error prone
steps. Safety context is lost. In addition, the porting to the
target implicitly requires certain approximations (e.g. trans-
formation to fixed point, reduction of bit depth) with often
unforeseeable impact due to the non-continuous nature
of modern (discriminative) deep neural networks (DNNs).
There is no decoupling between the development of tools
and project specific tasks. Instead, the challenges must be
solved along the way.

AUTOSENS PROCEEDINGS 8

cast
semi-manual

approximation
in proprietary

tool chain

generic model
proprietary

model

safey context void

cast
semi-manual

approximation
in proprietary

tool chain

generic model
proprietary

model

safey context safety context

Fig. 6. Top: transfer gap. Bottom: Safety context is preserverd.

According to [18] approximative computing is a major
research trend to target this in a scientific and structured
way instead.

3 CHALLENGES IN CURRENT SOFTWARE DEVEL-
OPMENT FOR AUTOMOTIVE APPLICATIONS

As software complexity increases exponentially the aim is
to ideally reduce the development time. With the expected
increase in OTA software updates, software development
for applications has recently become one of the most chal-
lenging and expensive portions of the car-line production.
Extensive safety, quality, and reliability requirements remain
following the traditional automotive constraints still being
necessary. This impacts the pace of innovation and cost,
putting pressure on development teams to deliver. Also, the
increasing amount of software comes along with an increas-
ing complexity, architecture shaped by particular automo-
tive requirements, such as hard-real time, high reliability
and safety, limited resources, cost pressure, short develop-
ment cycles and heterogeneity of domain knowledge [19].

3.1 Development process: V-model
With regard to AutomotiveSPICE (or A-SPICE) V-Model
in Fig. 7, the standard process in automotive development
and production, software application development is just a
single box of SWE.3 “Software Detailed Design and Unit
Construction” but porting is done within SWE.4 “Software
Unit Verification” with regard to the entire production pro-
cess. There are many other components to fulfill, including
system, hardware requirement, quality assurance, test and
validation. The full cycle might take up to three years of
development. In reality, the advancing of software solutions
is updated quickly with a significant increase in its complex-
ity. This means that there is no available and fixed solution
in the rapid growth of software technology. This requires
a new strategy of development to catch up with rapid and
complex changes. Indeed, agile development has become
a hot topic in automotive for years to adapt the practice.
Still, with the current development process (V-Model), agile
development can only cope with small changes or devia-
tions from the solution path, but this is not efficient for a
solution switch nor an upgrade. For a complex problem, if
the solution is not fixed, then there must be more iterations

inside the development cycle where Software-in-Loop (SIL)
and Hardware-in-Loop (HIL) have to be performed continu-
ously together with software modifications and updates. In
reality, typical SIL and HIL activities might take years to be
done with a large dataset, meanwhile an upgrade of a state-
of-the art solution might already be required. This enforces
a mutual development or a very close collaboration between
the advanced and production development. An example of
V-Model+ (or modified V-Model) to be more flexible with
the agile development idea is illustrated in Fig. 8. In this
new process, two loops are designed for possible updates or
upgrades of software:

1) the first loop is to continuously update the solution
to satisfy given KPIs at SIL;

2) verification of the updated solution in the target
hardware.

Advanced development is expected to join the first loop
and the second loop partially at the small scale of dataset.
The production development will be responsible for the
modification and verification on a much larger dataset than
usual.

3.2 Human resource demand and Operational Chal-
lenges
Achieving very high-quality assurance and safety targets
drives the automotive world to become quite a closed
community and difficult to join for newcomers. Addition-
ally, many aspects of development can only be covered
by highly experienced members (10 to 20 years of hand-
on experience), so finding trained personnel is always a
challenge. This traditional issue comes from the variety
of highly customized and optimized automotive systems
which need very much hands-on experience at production
level. A clear path to solve the issue is to approach more
advanced standards and advanced technologies which are
generic enough and familiar to the latest generation of
programmers.

3.2.1 A new kind of programmer is needed
A developer who is versed in standard modern C++ can
use SYCL very quickly. The challenge for a developer is
to shift their thinking to conceptualize programming in a
highly parallel programming paradigm. It requires practice
and familiarization with new programming and design
approaches in order to create efficient programs. There are
also parallel libraries that are emerging to reduce the coding
effort required by the programmer, like Parallel STL (C++
Standard Template Library). With parallel programming
comes new programming design patterns, which have ex-
isted in the HPC domain for years. Patterns, like the reduc-
tion pattern, have been crafted over the years to maximize
performance and efficiency on parallel computer systems
such as supercomputers. These patterns need to be coded
efficiently, to reduce power consumption and improve ex-
ecution time in any computing application. The developer
is free to add additional libraries to their application, even
non-C++ libraries like Python with few restrictions. Python
is used here to express tensor models used by GoogleTM’s
TensorFlowTM library (written in C++).

AUTOSENS PROCEEDINGS 9

Fig. 7. A-SPICE V-Model

Embedded

Software (Advanced-to-Production)

-Use Cases
-High Level
Requirements

Static Design
(HW interfaces and
allocation of the SW to
the HW devices)

Algorithm
Development
(Algo-C –> Ref-C)

Embedded
Implementation
(Ref-C –> Emb-C)
Unit-Test

Vehicle System
Performance Test
based on E.01

Vehicle System
Verification
(HW Interfaces, Sensors
Calibration, System
Running without Crash,
etc.)

SW Performance Validation
On Vehicle based on:
-Use Cases/Scenarios
- Demo to Customers (RFI, RFQ)

SW Functional Verification
On Bench
- KPIs satisfy customer‘s specs

Verification of SW
in HW on Bench

E.02 (SYS.3)
SYS Architect

E.01
(SYS.1-SYS.2)

Requirements

E.03 (SWE.1,2)
SW Architect

E.04 (SWE.3)
SW Development

E.05 (SWE.4,5)
Embedded

E.06 (SWE.4,6)
HIL

E.07 (SWE.4)
SIL

On Bench

On Vehicle

E.09 (SYS.4)
SYS Integration Test

E.10
(SYS.4,5)
SYS Specs

TestOn Vehicle

On Vehicle

Static Design
(split SW into SW
modules) Loop

On PC

E.08 (SWE.5,6)
SW Test

On Vehicle

Loop

Fig. 8. Revolutionized V-Model for Agile Development

A developer only versed in C++ prior to C++ ’11 will
have to learn some modern C++ features required to code

with SYCL. An example of this type of developer is one who
has been writing C++ following the automotive industry’s

AUTOSENS PROCEEDINGS 10

de facto coding standard, MISRA C++. They would also
need to learn to use C++ templates and some more general
good practices like RAII (pattern Resource Acquisition Is
Initialization) or familiarize themselves with the supporting
STL resource management functions.

A developer only versed in ’C’ programming operating
close to the hardware, using global variables and poking
registers, will have a steeper learning curve. They would
need to familiarize themselves with object-oriented pro-
gramming (OOP) and practice writing C++ using all its
features like class inheritance, and templates while taking
care not to continue writing ’C’ style code. With that also
comes learning all the additional set of C++ programming
complexities on top of the existing ’C’ ones.

A comparison of different levels of standards and
their decoupling/applicability to hardware, software and
libraries is depicted in Fig. 9.

According to the Khronos Group [20]: ”SYCL is a
standard C++ based heterogeneous parallel programming
framework for accelerating High Performance Comput-
ing (HPC), machine learning, embedded computing, and
compute-intensive desktop applications on a wide range of
processor architectures, including CPUs, GPUs, FPGAs, and
AI processors.”

3.3 Chip dependency
Due to cost and performance restrictions, automotive hard-
ware is highly specialized and optimized for some spe-
cific use-cases. It is often not flexible, and sometime not
even programmable where developers can only call existing
functions with some configurable parameters. This severely
restricts the scalability, as well as the applicability of new
innovative solutions. Indeed, most state-of-the-art technolo-
gies could not be ported to the deployed platform due to
many hardware limitations. For example:

• some (like deep learning) require too much through-
put which is out of scope of the current hardware.

• some (like SLAM) do not require a powerful pro-
cessing unit, but need a fast memory copy between
CPU and GPU, which is not supported by most of
automotive hardware.

• some (pixel processing, e.g., like Optical Flow) are
performed by hardware acceleration with compro-
mised precision, which do not allow developers to
implement their desired/updated/innovative algo-
rithm. Also, low-level pixel processing requires the
support of a hardware acceleration unit, which is
heterogeneously designed by different companies.
Developers might even need to learn a new type
of low-level programing language for specific hard-
ware, such as EVE, FPGA, etc.

• some (like sensor fusion, or optimization solvers)
need a high precision-resolution, which is strongly
constrained by hardware.

With all the examples of hardware dependency, it is
obvious that switching to new hardware almost always
needs software development to start again from scratch.
Reuse or CD is not possible with such a hardware limited
dependency.

3.4 Handling software bugs

The recent increase in call-backs from OEMs for bug-fix
issues might be explained by the reduction of development
time before production, while the complexity of the systems
increases significantly. In fact, heterogeneously integrated
design solutions might account for further issues, e.g., some
parts inherited from SoC libraries, and some coming from
Tier 1 development. Also, many available solutions are
designed to work under many narrow assumptions which
are easily failed in real-life scenarios, for example a perfectly
flat road, structured environment, etc. Design issues have
no easy fix, and usually lead to a failure of the product.
Alternatively, the majority of small bugs can be easier to fix
by applying new software update. The main cause for this
issue should account from insufficient quality assurance,
test and validation. Due to the cost and time pressures, not
many Tier 1/Tier 2 or even OEMs are able to strictly apply
the A-SPICE 3 standard or don’t fully perform functional
safety. A modern approach for the later issue type is to have
OTA software updates. This is somewhat controversial and
is often referenced as potentially impacting the safety and
security of the vehicle when not fully verified.

4 WHERE IS THE NEW SOFTWARE COMING FROM?

An important trend that has been observed recently is the
shift towards powerful, centralized controllers. Whereas
vehicles in the past used hundreds of small ECUs, each typi-
cally devoted to a single task, modern vehicles use a smaller
number of more powerful centralized domain controllers.
For example, Tesla R© uses a single domain controller and
the Volkswagen R© ID.3 uses two controllers.

As these use centralized domain controllers, they are
now responsible for the execution of mainly simultaneous
tasks, and also need to fulfill real-time constraints for those
tasks that have such requirements. These controllers need
to provide vast amounts of computational power, which is
typically not only achieved by scaling up the number of
processor cores, but also through the deployment of hetero-
geneous systems, combining CPUs with a variety specialized
processors and accelerators.

Examples of such accelerators include, next to GPUs,
FPGAs or custom processors for image processing or AI
tasks. Programming such heterogeneous systems with a
variety of different functional units poses new challenges
to the automotive industry, which has so far mainly relied
on inherently sequential programming models. To make full
use of the computing capability provided by platforms, the
automotive industry needs to adopt programming models
that allow it to fully leverage the parallelism and variety of
specialized accelerators on such platforms. However, there
is no need to re-invent the wheel, parallel and hetero-
geneous programming models have been researched and
established in other sectors such as smartphones, PCs and
High-Performance Computing (HPC), with many of the mod-
els serving as a good starting point for automotive software
development. Yet, the selection of one or more multiple
programming models, coupled with proprietary vs. open
standards, is a crucial decision.

AUTOSENS PROCEEDINGS 11

HW

Libs

SW/SDK

proprietary standards

cuDNN

no standard

proprietary accelerator
IP provider

Selected Multiple GPUs
decoupling SW <-> HW

proprietary SDK/compiler

proprietary libs
(closed island)

proprietary HW processor

mutliple libs
incl. open source (Tensorflow,

pyTorch, Caffe, OpenCV)

CUDA

many to one. enables
 decoupling of lib to meta layer

one to selected. enables
decoupling of code to hw target

Other Processing HW

missing

one to one only

one to one only

mutliple libs
incl. open source (Tensorflow,

pyTorch, Caffe, OpenCV)

missing

Other Processing HW

missing

open standards

Multiple GPUs/CPUs/processing HW
decoupling SW <-> HW

mutliple libs
incl. open source (Tensorflow,

pyTorch, Caffe, OpenCV)

OpenCL

one to many. enables
decoupling of code to hw target

many to one. enables
decoupling of lib to meta layer

SYCL

Fig. 9. Comparison of no standards vs. proprietary vs. open standards w.r.t. independence towards hardware, software and high-level libraries

4.1 Proprietary

One of the most popular proprietary programming models
is the CUDA programming language, developed and main-
tained by Nvidia. CUDA allows the efficient programming
of GPUs in heterogeneous systems with a programming lan-
guage based on C/C++. The survey in [21] found the CUDA
ecosystem, including compilers, profilers and specialized
libraries for tasks such as AI training and inference, to be
very rich. In comparison to the open standard OpenCL and
its diverse hardware support, the focus of CUDA is solely
on officially supported Nvidia devices using Nvidia GPUs.
This does however allow for a more consistent development
environment with good performance. A CUDA program
still requires restructuring to enable parallelism and to of-
fload computations quickly.

However, CUDA, just like any other proprietary stan-
dard, has one major drawback, the danger of a potential
vendor lock-in. Production-ready compilers are only avail-
able from Nvidia and only for Nvidia devices (currently
only GPUs). This puts one of the most important assets
of an automotive company, namely its production software
code, at a high risk, because a switch to a vendor other than
Nvidia could potentially render the entire existing CUDA
code base almost useless. Besides that, proprietary program-
ming models are typically only available on a very limited
set of devices. In the case of CUDA, the programming
model and API can only be used to target Nvidia GPUs, but
not to target other important components of heterogeneous
systems, such as multi-core CPUs, FPGAs or specialized,
custom accelerators for AI.

4.2 Open standards

A key advantage of an open standard lies in its diversity:
It takes many experts from many different companies and
fields (each with different experiences) to design the spec-
ification of an API. Thus, with so many interested parties
working together for mutual benefit, improvements can be
made quickly to address concerns and turn around a revised
specification. Open standard implementations are available

from different vendors. The software API provides their
products with a common programming interface for a large
variety of devices and architectures. One example of such an
established standard available on a broad range of devices
is OpenCL. OpenCL is not only used by most GPU vendors,
but can also be used to program multi-core CPUs, FPGAs
(both Intel R© and Xilinx R©) and more specialized processors
(e.g. Renesas R© R-Car).

Another example of a well-established, successful stan-
dard for parallel programming is OpenMP. Although
OpenMP in the beginning was mainly designed as a shared
memory programming model for homogenous multi-core
CPUs, it has been extended to also target heterogenous
accelerators in recent versions of the standard. Nowadays,
OpenMP device offloading support is available for GPUs
from many different vendors, including AMD R©, Nvidia R©

and Intel R©, and for other specialized accelerators such as
vector engines.

In 2014 SYCL became a new addition to the body of
open, parallel programming models using modern standard
C++ and the single source programming model. Designed
as a spiritual successor to OpenCL, SYCL avoids many of
the pitfalls of OpenCL identified in earlier studies (e.g. [21],
[22]), such as the need to distribute host and device code
across different compilation units or the extremely verbose
host API. SYCL is also designed to interoperate extremely
well with C++ as the underlying programming language
and its mechanisms. This allows developers to reuse signif-
icant parts of existing, sequential implementations, which
has proven to be extremely useful to avoid introducing
errors into the code during parallelization in the context of
OpenMP [21].

Although SYCL is a relatively new standard, it has
received increasing attention and a variety of ven-
dors have announced or already released SYCL sup-
port, including CPU- & GPU-vendors (AMD R© ROCm,
Intel R©), FPGA-vendors (Xilinx R©, Intel R©) and others, e.g.,
Renesas R©/Codeplay for R-Car. This broad adoption and the
availability for many different platforms and architectures
make SYCL a very interesting candidate for future develop-

AUTOSENS PROCEEDINGS 12

ment of automotive software. Section 6 will discuss SYCL in
more detail.

Common to all open standards mentioned in this section
is that they are maintained by multi-partisan institutions,
e.g., the Architecture Review Board (ARB) or the Khronos
working groups for SYCL and OpenCL. These institutions,
which develop and maintain the open standards, offer a
well-suited platform for stakeholders to engage in the de-
velopment of these standards and provide an opportunity
for the automotive industry to raise awareness for their
particular requirements.

4.3 Open-source safety concern

The computing stack evolves, some software becomes
”legacy,” algorithms get improved, and new algorithms are
found to replace the ones that are no longer suitable. In
the dynamic world where there are few considerations for
safety requirements, the technology and its software will
evolve very fast, and this is a good thing as it drives innova-
tion forward. Faster innovation and iterative development
are methods that the automotive industry is seeing as a
way to develop the next generation of vehicle features that
consumers want and regulations stipulate. A lot of the open-
source projects being used by researchers are not developed
following functional safety standards, but they are likely to
evolve to be usable in a safety critical environment too. Once
this technology is brought into the automotive domain, the
speed of evolution, that was delivering the rapid technology
research, stalls as it has to follow safety processes and meet
specific operational safety requirements. The developers
who work in open-source communities do not necessarily
have a vested interest in safety applications, and while they
help evolve the software, they may have no consideration
for supporting software for safety purposes. The burden
of work now falls on the safety application developers to
evolve the tools and software, often with a much smaller
number of people.

5 SOFTWARE COMPLEXITY IS GROWING

Automotive vehicles are known to be the most complex
mass product of mankind, with the innovations rising expo-
nentially. Additional degrees of complexity are introduced
by the ever-growing number of car lines and car line vari-
ants. Where, decades ago, an OEM focused on three car
lines (e.g. Mercedes R© C-Class / BMW R© 3 series, E-Class /
5 series, S-Class / 7 series) now a huge and ever-increasing
variety is available. The same applies to the option variants
within each car line. The increasing connectivity and interac-
tion with other systems of the same vehicle instance further
adds degrees of complexity. In addition, the design cycles of
subsystems/components differ, so the set of combinations
is further fueling the complexity degrees of freedom and
this leads to ”uncontrolled growth” and fragmentation.
According to Conway’s rule, the resulting ADAS are limited
by the given organization/communication structure of the
company [23] : ”Any organization that designs a system
(defined broadly) will produce a design whose structure is
a copy of the organization’s communication structure” [24].

5.1 How is this managed

The automotive industry is applying several quality mea-
sures to control the software complexity and to manage
software development.

5.2 CI/CD challenges

5.2.1 What are they?
• Breaking software APIs APIs (Not following an

agreed open stand)
• Breaking Application Binary Interfaces for libraries

(Not adhering to C++ guidelines to prevent issues)
• The archiving, management and transportation of

large volumes of applications’ data
• The manual elements of CI / CD for automotive
• Multiple vendors in the development of the applica-

tion
• Open-source and development direction to support

automotive’s requirements

CI means a high frequency of updates to all parts of the
ADAS application compute stack.

One of the attractions of open standards and the API
specification is that they ensure an application can use any
implementation which has shown to be conformant. This
means for the developer that their applications do not need
to be rewritten for different targets. However, new ver-
sions of libraries require testing within the stack to provide
assurances that applications still operate as expected. A
supporting development plan would likely mandate the use
of a comprehensive testing suite.

For some developers, the work involved in keeping
up-to-date with the latest changes elsewhere in the stack
could be too much, and so they may opt to hold back
on upgrading. The disadvantage here is, as the developer
holds back, the greater the changes they need to make when
they adopt a later version. Technology like OTA updates in
vehicles is enabling the frequency of updates to increase.
This is very attractive, as it allows security updates or bug
fixes to get to the vehicles quickly without the need for
recalls, added costs and delays, but it does lead to concerns
of how to validate such complex software in short periods
of time.

While the open standard ensures conformance between
major versions it does not mean implementers’ minor ver-
sions are always compatible. There are two ways a 3rd
party software library can break an application should it
be upgraded:

1) Application facing API (application programming
interface) changes by the library

2) Hidden ABI (application binary interface) changes
within the library

In a large C++ codebase with many internal interfaces
between components, whether developed in house or by the
open source community, the opportunities to break binary
compatibility between versions are high. The source of these
incompatibility changes come from the use of the C++
language and how the C++ compiler compiles the code.
Many of the C++ breaking code changes can be identified
quite easily and, with the use of good coding development

AUTOSENS PROCEEDINGS 13

policies in place, developers can avoid ABI incompatibility
changes.

The application developer invests time and gains confi-
dence in the libraries they choose to use. When API or ABI
changes break their application, they must divert resources
to investigate issues and this, if it occurs too frequently,
dents confidence. The frequency of library changes and fixes
means many more new releases of the applications into the
field. An implementation supporting semantic versioning
would allow the practitioners to trace changes to vehicles.

6 SYCL
SYCL is a promising candidate to address the challenges
of programming parallel and heterogeneous systems in the
future. It is intended to support diverse applications from
HPC and embedded applications, to powerful frameworks
for machine learning [25], [26], [27]. The open standard,
backed by many companies across a variety of platforms,
such as CPUs, GPUs and FPGAs, is designed to bring paral-
lel and heterogeneous programming capabilities to C++ and
eventually converge with ISO.

As outlined in [28], SYCL does not require any additional
language constructs such as pragmas and relies on pure
C++. This also allows the re-use of an existing, serial code
base as a starting point for a parallel implementation and re-
quires no extensive restructuring of the code, two properties
of programming models that proved highly beneficial in the
study in [21]. The SYCL runtime will organize the different
kernels into a task-graph, based on the data-access specifica-
tion, and will handle scheduling, synchronization and data
management automatically. The kernels themselves use a
data-parallel execution model, similar to OpenCL or CUDA
kernels.

6.1 SYCL training and usage
As highlighted, SYCL is evolving as an industry standard
for heterogenous programming. Substantial training mate-
rial is available. As a main source of information, the SYCL
ecosystem website is available – www.sycl.tech. Here, the
latest updates, research activities and code can be found.
For programmers, additional information and training can
be found in Codeplay’s SYCL guide [29].

The generic flow with standardized interfaces is illus-
trated in Fig. 10.

Since safety is a crucial element for automotive, a series
of articles providing guidance for Functional Safety Man-
agers and developers, ”SYCL for Safety Practitioners”, is
being published. An introduction to the guidance material
is given in [31].

6.2 SYCL status quo
Although the SYCL open standard specification made its
first appearance in 2014, it is still steadily evolving to meet
the needs of its Khronos work group members. SYCL is
gaining the interest of many industries such as automo-
tive, HPC and others. Intel recently embraced SYCL as the
core of its oneAPI initiative (Intel’s SYCL implementation
and supporting tools), feeding additional requirements into
the standard. One of the main concerns of the industry,

Fig. 10. Layers of implementation from [30] enabling the decoupling of
proprietary HW to enable true continuous development over multiple
generations and platforms.

SYCL 1.2.1 specification open-source repository SYCL 2020 specification open-source repository

Clang
(Intel SYCL)

Any CPU

OpenCL + SPIR-V
• Intel CPU
• Intel GPU
• Intel FPGA

Codeplay
ComputeCpp

Any CPU

OpenCL + SPIR-V
• Intel CPU
• AMD CPU
• Intel GPU
• AND GPIU
• ARM Mali
• Renesas R-Car

CUDA + PTX
• Nvidia GPU

Xilinx
triSYCL

Any CPU

OpenCL + SPIR-df
• POCL – CPU, Nvidia GPU
• Xilinx FPGA
• Nviida CUDA

hipSYCL

Any CPU

ROCm
• AMD GPU

CUDA
• Nvidia GPU

Intel DPC+++

Any CPU

oneAPI Level 0
• Intel CPU
• Intel GPU
• Intel FPGA

OpenCL + SPIR-V
• Intel CPU
• Intel GPU
• Intel FPGA

CUDA + PTX
• Nvidia GPU

OpenMP

OpenMP
Experimental

Fig. 11. There are different implementations available supporting differ-
ent platforms already. Further SoC and IP vendors are following.

especially in the automotive context, is power and silicon
efficiency. As discussed earlier, this has so far been one of the
key decision-making criteria for new chip and underlying
silicon accelerator IP. There are different implementations
available, as can be seen in Fig. 11 from [30]. They all
follow the open and public standard with different layers
running on different hardware underneath, as shown in
Fig. 12. Moreover, SYCL kernels can run on CPUs as well
as multiple targeted, discrete devices, like GPUs, DSPs or
FPGAs, at once which further increases its performance and
portability capabilities. Another factor the SYCL specifica-
tion has addressed in its design and proved successful in
is the ability to manage data movement between the host
and target devices in a manner that is unintrusive for the
developer. SYCL manages the multiple data dependencies
between the host and devices and synchronizes data once
the developer commits kernels for execution. An interesting
point for a SYCL adopter is, while there is a SYCL specifi-
cation, the adopter or SYCL implementation developer does
not have to follow the specification exactly. The implementa-
tion can be customized to a customer’s requirements which
can mean a lighter implementation if necessary. A SYCL
implementation must follow the Khronos specification if the
product is to be certified and marketed as having a SYCL
implementation.

There are several performance figures and benchmark
activities available which focus on specific use cases and
scenarios. [32] shows very comparable performance results
between SYCL and CUDA. In [33] it is shown how highly
parametrized SYCL kernels have a competitive advantage
over manually tuned libraries such as clBLAST and others.

AUTOSENS PROCEEDINGS 14

Host
multi

core CPU

Application to acceleration interfaces

kernels

Heterogenous platform – any mix of accelerators

ADAS / Autonomous driving software applications / use cases

Parking Sensory
perception

Localisation
Mapping

path HMI

SYCL implementation library
3rd party libraries
(e.g. STL library)

3rd party ‘AI’ related
libraries AI, math's,
CNN/DNN, Parallel STL

Base software layer (e.g. Real Time OS)Hardware drivers

Hardware
sensory units
(+ software) AI ASICGPUFPGACPU cores DSP

kernels

?

SYCL template library

Backend (e.g. OpenCL) Host code

Host code

Host code

Host code

Host code

kernels

kernels

kernels

kernels

Host code

Host code

Kernels = accelerated parallel code

Fig. 12. SYCL (C++ Single-source Heterogeneous Programming for
OpenCL) for OpenCL

In [34] a comparison between OpenCL and OpenMP is per-
formed. Here, the conclusion indicates a performance gap
for SYCL remains but highlights the potential for further
narrowing. An ADAS or AI application developer using
SYCL to write kernel programs to accelerate a computa-
tionally intensive task through the use of parallelism can
have their code execute on any of the target devices shown
in Fig. 12 (below each of the different implementations)
without the need for rewriting the kernel programs. With
SYCL’s single source model of application development
(kernels and host code side-by-side) portability is key. All
SYCL kernel programs will calculate the same results no
matter the device it is executed on, although they can
vary in execution speed which is expected. In [35] CUDA
also outperforms SYCL to date, however optimization for
cross platform SYCL applications has just started. The clear
conclusion from publicly available data sources indicate
that SYCL is very close in performance to proprietary and
hardware specific implementations. Demand from the au-
tomotive industry, with a clear requirement for a highly
optimized implementation, will accelerate progress on this
path further.

7 KEY TECHNICAL REQUIREMENTS FOR AUTOMO-
TIVE FOR OPEN STANDARDS

Various KPIs are needed within the development cycle to
evaluate, quantify and rate the capabilities of automotive
software projects. Such multidimensional KPIs require score
weightings to summarize to a single score. The weighting
is potentially a function of project goals, supply chain roles
and user scopes. However, it is strongly felt that the follow-
ing items are relevant to most of the users in this space with
an ever-increasing importance weighting on AI, computer
vision and maintainability. A high-level overview of major
relevant KPI areas is depicted in Fig. 13.

Not only these technical aspects but also organizational,
legal and commercial aspects are relevant to consider and
measure. Shorter and shorter development cycles will ulti-
mately lead to the need for continuous development and,
crucially, an optimization of development time. While the
availability of libraries is crucial, the underlying maturity of
them is key. The more people that use such flows, the higher

average implementation time

optimization time

quality metrics applicable

safety compliance

code maintainability

cross platform usability

academia access

open access

cross industry usability

link to AI frameworks

link to CV frameworks

end-to-end implementation

tool ecosystem and tool

validation tool chain

Fig. 13. Relevant high level KPIs for automotive open standards.

the maturity of the development process. The corresponding
automotive KPIs are relevant on component/sub-system
level but also on system level, as illustrated by gauges in
Fig. 14 where each component is measured and strongly
contributes to the overall system performance.

system level

component component

Fig. 14. KPIs need to be applicable for both end-to-end system level
quality measurements but also for component/sub-system level do-
mains.

The high-level clustering of relevant KPI categories into
mainly technical categories, as opposed to commercially
driven KPIs, is also important, as shown in Fig. 15. Of
course, all components always have a relevant commercial
aspect underneath.

AUTOSENS PROCEEDINGS 15

sw frameworks

AI frameworks
Tensorflow,

PyTorch, Caffe

CV
frameworks

OpenCV

code tool ecosystem

code
validation/
verification

code
generation

accessibility

open access academia

business domains

automotive

other
aeronautics,

industrial,
medical,

agricultural

hardware platform domains

SoC vendors IP vendors

technically
dominated

commercially
dominated

.

Fig. 15. Clustering in mainly technical vs. mainly commercially domi-
nated KPI categories.

8 GAP DISCUSSION OPEN STANDARDS VS. AUTO-
MOTIVE REQUIREMENTS

8.1 What is missing inside SYCL for automotive (if any-
thing) with respect to KPIs

Integration of safety and the Safety-of-the-Intended-
Function (SOTIF) approaches have a big impact on software
development. First stages are being implemented and rely
heavily on standard programming models [36]. Automated
code coverage checking, interface testing and other standard
procedures that are established in classical “C” are not yet
available for fully heterogenous compute environments. The
latest SYCL specification focuses on standard use cases. The
next step for support and diagnostic routines will have to
be agreed by the industry to ensure the exact requirements
are captured to enable cross platform availability. Since the
exact mechanism depends on the underlying hardware,
a generic abstraction formulation must be defined and
agreed [30].

With Khronos being an open standards group, any ex-
pert is invited to contribute and close the gaps.

9 CONCLUSION AND RECOMMENDATIONS

In this work, we have outlined the status quo of the
vehicle development process in general and the software
development process in particular. In the future and with
the advent of ADAS functionality, software is becoming
a crucial asset of automotive OEMs and Tier 1 suppliers.
To manage the complexity of modern automotive software

and preserve software IP across vehicle generations, the
automotive industry will need to adopt techniques from the
Continuous Development (CD) approach.

There is nothing missing today to allow OEMs, Tier 1s,
research, advanced developments and software partners to
start evaluating and developing with SYCL. The ecosystem
is well established, and many organizations are already con-
tributing their results, open source projects and guidance,
providing the support for anyone to get up and running.

The question is more about timing than the likelihood of
its adoption: when will ADAS software developers transi-
tion to a modern C++ programming style. Many companies
are already demanding OpenCL or SYCL within their re-
quirements and it is reassuring to see real ambition to com-
pete with the companies investing heavily in autonomous
vehicles.

There are still some hurdles to overcome with this ap-
proach, we do not pretend it is without issues, but the
demand for the latest algorithms and programming meth-
ods already embraced by some major companies can only
steer development teams towards open-standards-based so-
lutions.

Open standards are crucial to enable the automotive
digital transformation and make CD possible. SYCL as an
open standard shows absolute potential and is compatible
with the CD processes introduced into automotive software
development in the future. The SYCL implementations that
already exist today are examples of CD in action. As with
any open standard, its evolution comes from its contribu-
tors. The key stakeholders in the automotive industry can
adopt CD, supported by open standards like SYCL, for very
little entry cost.

REFERENCES

[1] M. Q. Pearl Doughty-White, Codebases, 2020 (accessed July 5,
2020). [Online]. Available: https://informationisbeautiful.net

[2] G. FASTR group data from IEEE Spectrum, The organically
secure vehicle of tomorrow, 2020 (accessed July 5, 2020). [Online].
Available: https://fastr.org

[3] R. McOuat, Cars are made of code, 2020 (accessed July 5, 2020).
[Online]. Available: https://blog.nxp.com/automotive/cars-are-
made-of-code

[4] G. G. Claps, R. B. Svensson, and A. Aurum, “On the journey to
continuous deployment: Technical and social challenges along the
way,” Information and Software Technology, vol. 57, pp. 21–31, 2015.

[5] The case for an end-to-end automotive software platform,
2020 (accessed July 5, 2020). [Online]. Available:
https://www.mckinsey.com/industries/automotive-and-
assembly/our-insights/the-case-for-an-end-to-end-automotive-
software-platform

[6] S. Ravi, The Audi vision of autonomous driving: A conversation
with Thomas Müller, ”https://www.linkedin.com/pulse/audi-
vision-autonomous-driving-conversation-thomas-mller-sanjay-
ravi/?articleId=6612208053502775296”, 2020 (accessed July 5,
2020).

[7] E. Talpes, D. D. Sarma, G. Venkataramanan, P. Bannon, B. McGee,
B. Floering, A. Jalote, C. Hsiong, S. Arora, A. Gorti, and G. S.
Sachdev, “Compute solution for tesla’s full self-driving com-
puter,” IEEE Micro, vol. 40, no. 2, pp. 25–35, 2020.

[8] G. Booch, Object Oriented Design with Applications. USA:
Benjamin-Cummings Publishing Co., Inc., 1990.

[9] M. Fowler and M. Foemmel, Continuous integration - Thought-
Works, 2006. [Online]. Available: http://www.thoughtworks.
com/ContinuousIntegration.pdf

[10] T. ROSSI, Autonomous and ADAS test cars produce over
11 TB of data per day, 2020 (accessed July 5, 2020).
[Online]. Available: https://www.tuxera.com/blog/autonomous-
and-adas-test-cars-produce-over-11-tb-of-data-per-day/

AUTOSENS PROCEEDINGS 16

[11] S. Heinrich, “Flash memory in the emerging age of autonomy,”
Flash Memory Summit, 2017.

[12] P. Viola and M. Jones, “Rapid object detection using a boosted cas-
cade of simple features,” in Proceedings of the 2001 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition. CVPR
2001, vol. 1, 2001, pp. I–I.

[13] N. Dalal and B. Triggs, “Histograms of oriented gradients for
human detection,” in Computer Vision and Pattern Recognition, 2005.
CVPR 2005. IEEE Computer Society Conference on, vol. 1, 2005, pp.
886–893.

[14] R. Smith and P. Cheeseman, “On the representation and estimation
of spatial uncertainty,” The international journal of Robotics Research,
vol. 5, no. 4, pp. 56–68, 1986.

[15] A. Krizhevsky, I. Sutskever, and G. Hinton, “Imagenet classifica-
tion with deep convolutional neural networks,” in NIPS, 2012, pp.
1106–1114.

[16] colab.research.google.com, Tensorflow tutorials, 2020 (accessed
July 5, 2020). [Online]. Available: hhttps://www.tensorflow.org/
tutorials?hl=en

[17] ——, Explore overfitting and underfitting, 2020
(accessed July 5, 2020). [Online]. Available: https:
//colab.research.google.com/github/tensorflow/docs/blob/
master/site/en/tutorials/keras/overfit and underfit.ipynb

[18] W. Liu, F. Lombardi, and M. Shulte, “A retrospective and prospec-
tive view of approximate computing [point of view,” Proceedings
of the IEEE.

[19] V. Schulte-Coerne, A. Thums, and J. Quante, “Challenges in
reengineering automotive software,” in 2009 13th European Confer-
ence on Software Maintenance and Reengineering, 2009, pp. 315–316.

[20] Khronos overview, 2020 (accessed July 5, 2020). [Online].
Available: https://sycl.tech/news/20/07/01/sycl2020-released-
Khronos.html

[21] L. Sommer, F. Stock, L. Solis-Vasquez, and A. Koch, “Ephos:
Evaluation of programming - models for heterogeneous systems,”
2019.

[22] L. Sommer, F. Stock, L. Solis-Vasquez, and A. Koch, “Work-in-
progress: Daphne - an automotive benchmark suite for parallel
programming models on embedded heterogeneous platforms,” in
2019 International Conference on Embedded Software (EMSOFT), 2019,
pp. 1–2.

[23] L. J. Colfer and C. Y. Baldwin, “The mirroring hypothesis:
theory, evidence, and exceptions,” Industrial and Corporate Change,
vol. 25, no. 5, pp. 709–738, 09 2016. [Online]. Available:
https://doi.org/10.1093/icc/dtw027

[24] M. E. Conway, “How do committees invent?” Datamation, April
1968. [Online]. Available: http://www.melconway.com/research/
committees.html

[25] R. Burns, J. Lawson, D. McBain, and D. Soutar, “Accelerated
neural networks on opencl devices using SYCL-DNN,” CoRR,
vol. abs/1904.04174, 2019. [Online]. Available: http://arxiv.org/
abs/1904.04174

[26] J. Lawson, “Towards automated kernel selection in machine learn-
ing systems: A sycl case study,” 2020.

[27] M. Goli, L. Iwanski, and A. Richards, “Accelerated machine
learning using tensorflow and sycl on opencl devices,” in
Proceedings of the 5th International Workshop on OpenCL, ser.
IWOCL 2017. New York, NY, USA: Association for Computing
Machinery, 2017. [Online]. Available: https://doi.org/10.1145/
3078155.3078160

[28] S. Lal, A. Alpay, P. Salzmann, B. Cosenza, N. Stawinoga,
P. Thoman, T. Fahringer, and V. Heuveline, “Sycl-bench: A versa-
tile single-source benchmark suite for heterogeneous computing,”
in Proceedings of the International Workshop on OpenCL, 2020, pp.
1–1.

[29] Codeplay, SYCL Guide, 2020 (accessed July 5, 2020).
[Online]. Available: https://developer.codeplay.com/products/
computecpp/ce/guides/sycl-guide

[30] Khronos SYCL Overview, 2020 (accessed July 5, 2020). [Online].
Available: https://www.Khronos.org/sycl/

[31] I. Rudkin, SYCL for Safety Practitioners – An Introduction,
2020 (accessed July 5, 2020). [Online]. Available: https://www.
codeplay.com/portal/blogs/2020/07/24/sycl-safety-part-1.html

[32] J. Stephan, “Innovative spracherweiterungen für beschleu-
nigerkarten am beispiel von sycl, hc, hip und cuda: Unterschung
zu nutzbarkeit und performance,” TU Dresden, 2019.

[33] J. Lawson, M. Goli, D. McBain, D. Soutar, and L. Sugy, “Cross-
platform performance portability using highly parametrized

SYCL kernels,” CoRR, vol. abs/1904.05347, 2019. [Online].
Available: http://arxiv.org/abs/1904.05347

[34] H. C. da Silva, F. Pisani, and E. Borin, “A comparative study of
sycl, opencl, and openmp,” in 2016 International Symposium on
Computer Architecture and High Performance Computing Workshops
(SBAC-PADW), 2016, pp. 61–66.

[35] W. Shin, K.-H. Yoo, and N. Baek, “Large-scale data computing per-
formance comparisons on sycl heterogeneous parallel processing
layer implementations,” Applied Sciences, vol. 10, no. 5, p. 1656,
2020.

[36] M. Odendahl, Mastering Automotive Software Development, 2020
(accessed July 5, 2020). [Online]. Available: https://www.silexica.
com/blog/ros-automotive-software-development/

Markus Glaser –
SW Project Lead Mercedes Benz
markus.glaser@daimler.com

Charles Macfarlane –
VP Marketing at Codeplay
charles.macfarlane@codeplay.com

Benjamin May –
CEO AMX13
benjamin.may@amx13.com

Dr. Sven Fleck –
CEO SmartSurv
fleck@smartsurv.de

AUTOSENS PROCEEDINGS 17

Lukas Sommer –
Research Associate at Embedded Systems &
Applications Group (ESA), TU Darmstadt
sommer@esa.tu-darmstadt.de

Jann-Eve Stavesand –
Head Of Consulting at dSPACE
jstavesand@dspace.de

Christian Weber –
Head of Advanced Engineering ADAS at
Continental
christian.10.weber@continental-
corporation.com

Dr. Duong-Van Nguyen –
Head of ADAS at Panasonic Automotive
Duongvan.Nguyen@eu.panasonic.com

Enda Ward –
Camera Architecture & Technology Group
Leader / Valeo Master Expert
Valeo Detection Vision Systems (DVS)
enda.ward@valeo.com

Illya Rudkin –
Principal Software Engineer at Codeplay
illya.rudkin@codeplay.com

Dr. Stefan Milz –
Head of R & D – Managing Director Spleenlab.ai
stefan.milz@spleenlab.ai

Rainer Oder –
CEO AOX Technologies
rainer.oder@aox-tech.de

Frank Böhm –
CEO hepaclouds
frank.boehm@heapclouds.com

Benedikt Schonlau –
Manager Consulting4Drive
b.schonlau@consulting4drive.com

AUTOSENS PROCEEDINGS 18

Oliver Hupfeld –
CEO Inno-Tec Innovative Technology
ohupfeld@in-technology.eu

Prof. Dr-Ing. Andreas Koch –
Technische Universität Darmstadt
Computer Science Department (FB20)
Embedded Systems & Applications Group (ESA)
koch@esa.tu-darmstadt.de

